Copied to
clipboard

G = C3316SD16order 432 = 24·33

8th semidirect product of C33 and SD16 acting via SD16/C4=C22

metabelian, supersoluble, monomial

Aliases: C3316SD16, C12.53S32, (C3×C6).38D12, C33(C242S3), C338Q83C2, C12⋊S3.3S3, (C3×C12).119D6, (C32×C6).36D4, C327(C24⋊C2), C6.9(C3⋊D12), C6.13(C12⋊S3), C2.5(C338D4), C31(D12.S3), C3211(D4.S3), (C32×C12).15C22, (C3×C3⋊C8)⋊2S3, C3⋊C82(C3⋊S3), C4.2(S3×C3⋊S3), (C32×C3⋊C8)⋊3C2, C12.13(C2×C3⋊S3), (C3×C12⋊S3).3C2, (C3×C6).78(C3⋊D4), SmallGroup(432,443)

Series: Derived Chief Lower central Upper central

C1C32×C12 — C3316SD16
C1C3C32C33C32×C6C32×C12C32×C3⋊C8 — C3316SD16
C33C32×C6C32×C12 — C3316SD16
C1C2C4

Generators and relations for C3316SD16
 G = < a,b,c,d,e | a3=b3=c3=d8=e2=1, ab=ba, ac=ca, ad=da, eae=a-1, bc=cb, bd=db, ebe=b-1, dcd-1=c-1, ce=ec, ede=d3 >

Subgroups: 1056 in 168 conjugacy classes, 46 normal (18 characteristic)
C1, C2, C2, C3, C3, C3, C4, C4, C22, S3, C6, C6, C6, C8, D4, Q8, C32, C32, C32, Dic3, C12, C12, C12, D6, C2×C6, SD16, C3×S3, C3⋊S3, C3×C6, C3×C6, C3×C6, C3⋊C8, C24, Dic6, D12, C3×D4, C33, C3⋊Dic3, C3×C12, C3×C12, C3×C12, S3×C6, C2×C3⋊S3, C24⋊C2, D4.S3, C3×C3⋊S3, C32×C6, C3×C3⋊C8, C3×C24, C3×D12, C324Q8, C12⋊S3, C335C4, C32×C12, C6×C3⋊S3, D12.S3, C242S3, C32×C3⋊C8, C3×C12⋊S3, C338Q8, C3316SD16
Quotients: C1, C2, C22, S3, D4, D6, SD16, C3⋊S3, D12, C3⋊D4, S32, C2×C3⋊S3, C24⋊C2, D4.S3, C3⋊D12, C12⋊S3, S3×C3⋊S3, D12.S3, C242S3, C338D4, C3316SD16

Smallest permutation representation of C3316SD16
On 144 points
Generators in S144
(1 65 76)(2 66 77)(3 67 78)(4 68 79)(5 69 80)(6 70 73)(7 71 74)(8 72 75)(9 134 44)(10 135 45)(11 136 46)(12 129 47)(13 130 48)(14 131 41)(15 132 42)(16 133 43)(17 105 140)(18 106 141)(19 107 142)(20 108 143)(21 109 144)(22 110 137)(23 111 138)(24 112 139)(25 118 37)(26 119 38)(27 120 39)(28 113 40)(29 114 33)(30 115 34)(31 116 35)(32 117 36)(49 62 125)(50 63 126)(51 64 127)(52 57 128)(53 58 121)(54 59 122)(55 60 123)(56 61 124)(81 92 103)(82 93 104)(83 94 97)(84 95 98)(85 96 99)(86 89 100)(87 90 101)(88 91 102)
(1 141 125)(2 142 126)(3 143 127)(4 144 128)(5 137 121)(6 138 122)(7 139 123)(8 140 124)(9 118 97)(10 119 98)(11 120 99)(12 113 100)(13 114 101)(14 115 102)(15 116 103)(16 117 104)(17 56 72)(18 49 65)(19 50 66)(20 51 67)(21 52 68)(22 53 69)(23 54 70)(24 55 71)(25 94 44)(26 95 45)(27 96 46)(28 89 47)(29 90 48)(30 91 41)(31 92 42)(32 93 43)(33 87 130)(34 88 131)(35 81 132)(36 82 133)(37 83 134)(38 84 135)(39 85 136)(40 86 129)(57 79 109)(58 80 110)(59 73 111)(60 74 112)(61 75 105)(62 76 106)(63 77 107)(64 78 108)
(1 106 49)(2 50 107)(3 108 51)(4 52 109)(5 110 53)(6 54 111)(7 112 55)(8 56 105)(9 83 25)(10 26 84)(11 85 27)(12 28 86)(13 87 29)(14 30 88)(15 81 31)(16 32 82)(17 75 124)(18 125 76)(19 77 126)(20 127 78)(21 79 128)(22 121 80)(23 73 122)(24 123 74)(33 48 101)(34 102 41)(35 42 103)(36 104 43)(37 44 97)(38 98 45)(39 46 99)(40 100 47)(57 144 68)(58 69 137)(59 138 70)(60 71 139)(61 140 72)(62 65 141)(63 142 66)(64 67 143)(89 129 113)(90 114 130)(91 131 115)(92 116 132)(93 133 117)(94 118 134)(95 135 119)(96 120 136)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88)(89 90 91 92 93 94 95 96)(97 98 99 100 101 102 103 104)(105 106 107 108 109 110 111 112)(113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128)(129 130 131 132 133 134 135 136)(137 138 139 140 141 142 143 144)
(1 31)(2 26)(3 29)(4 32)(5 27)(6 30)(7 25)(8 28)(9 112)(10 107)(11 110)(12 105)(13 108)(14 111)(15 106)(16 109)(17 129)(18 132)(19 135)(20 130)(21 133)(22 136)(23 131)(24 134)(33 67)(34 70)(35 65)(36 68)(37 71)(38 66)(39 69)(40 72)(41 138)(42 141)(43 144)(44 139)(45 142)(46 137)(47 140)(48 143)(49 81)(50 84)(51 87)(52 82)(53 85)(54 88)(55 83)(56 86)(57 104)(58 99)(59 102)(60 97)(61 100)(62 103)(63 98)(64 101)(73 115)(74 118)(75 113)(76 116)(77 119)(78 114)(79 117)(80 120)(89 124)(90 127)(91 122)(92 125)(93 128)(94 123)(95 126)(96 121)

G:=sub<Sym(144)| (1,65,76)(2,66,77)(3,67,78)(4,68,79)(5,69,80)(6,70,73)(7,71,74)(8,72,75)(9,134,44)(10,135,45)(11,136,46)(12,129,47)(13,130,48)(14,131,41)(15,132,42)(16,133,43)(17,105,140)(18,106,141)(19,107,142)(20,108,143)(21,109,144)(22,110,137)(23,111,138)(24,112,139)(25,118,37)(26,119,38)(27,120,39)(28,113,40)(29,114,33)(30,115,34)(31,116,35)(32,117,36)(49,62,125)(50,63,126)(51,64,127)(52,57,128)(53,58,121)(54,59,122)(55,60,123)(56,61,124)(81,92,103)(82,93,104)(83,94,97)(84,95,98)(85,96,99)(86,89,100)(87,90,101)(88,91,102), (1,141,125)(2,142,126)(3,143,127)(4,144,128)(5,137,121)(6,138,122)(7,139,123)(8,140,124)(9,118,97)(10,119,98)(11,120,99)(12,113,100)(13,114,101)(14,115,102)(15,116,103)(16,117,104)(17,56,72)(18,49,65)(19,50,66)(20,51,67)(21,52,68)(22,53,69)(23,54,70)(24,55,71)(25,94,44)(26,95,45)(27,96,46)(28,89,47)(29,90,48)(30,91,41)(31,92,42)(32,93,43)(33,87,130)(34,88,131)(35,81,132)(36,82,133)(37,83,134)(38,84,135)(39,85,136)(40,86,129)(57,79,109)(58,80,110)(59,73,111)(60,74,112)(61,75,105)(62,76,106)(63,77,107)(64,78,108), (1,106,49)(2,50,107)(3,108,51)(4,52,109)(5,110,53)(6,54,111)(7,112,55)(8,56,105)(9,83,25)(10,26,84)(11,85,27)(12,28,86)(13,87,29)(14,30,88)(15,81,31)(16,32,82)(17,75,124)(18,125,76)(19,77,126)(20,127,78)(21,79,128)(22,121,80)(23,73,122)(24,123,74)(33,48,101)(34,102,41)(35,42,103)(36,104,43)(37,44,97)(38,98,45)(39,46,99)(40,100,47)(57,144,68)(58,69,137)(59,138,70)(60,71,139)(61,140,72)(62,65,141)(63,142,66)(64,67,143)(89,129,113)(90,114,130)(91,131,115)(92,116,132)(93,133,117)(94,118,134)(95,135,119)(96,120,136), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128)(129,130,131,132,133,134,135,136)(137,138,139,140,141,142,143,144), (1,31)(2,26)(3,29)(4,32)(5,27)(6,30)(7,25)(8,28)(9,112)(10,107)(11,110)(12,105)(13,108)(14,111)(15,106)(16,109)(17,129)(18,132)(19,135)(20,130)(21,133)(22,136)(23,131)(24,134)(33,67)(34,70)(35,65)(36,68)(37,71)(38,66)(39,69)(40,72)(41,138)(42,141)(43,144)(44,139)(45,142)(46,137)(47,140)(48,143)(49,81)(50,84)(51,87)(52,82)(53,85)(54,88)(55,83)(56,86)(57,104)(58,99)(59,102)(60,97)(61,100)(62,103)(63,98)(64,101)(73,115)(74,118)(75,113)(76,116)(77,119)(78,114)(79,117)(80,120)(89,124)(90,127)(91,122)(92,125)(93,128)(94,123)(95,126)(96,121)>;

G:=Group( (1,65,76)(2,66,77)(3,67,78)(4,68,79)(5,69,80)(6,70,73)(7,71,74)(8,72,75)(9,134,44)(10,135,45)(11,136,46)(12,129,47)(13,130,48)(14,131,41)(15,132,42)(16,133,43)(17,105,140)(18,106,141)(19,107,142)(20,108,143)(21,109,144)(22,110,137)(23,111,138)(24,112,139)(25,118,37)(26,119,38)(27,120,39)(28,113,40)(29,114,33)(30,115,34)(31,116,35)(32,117,36)(49,62,125)(50,63,126)(51,64,127)(52,57,128)(53,58,121)(54,59,122)(55,60,123)(56,61,124)(81,92,103)(82,93,104)(83,94,97)(84,95,98)(85,96,99)(86,89,100)(87,90,101)(88,91,102), (1,141,125)(2,142,126)(3,143,127)(4,144,128)(5,137,121)(6,138,122)(7,139,123)(8,140,124)(9,118,97)(10,119,98)(11,120,99)(12,113,100)(13,114,101)(14,115,102)(15,116,103)(16,117,104)(17,56,72)(18,49,65)(19,50,66)(20,51,67)(21,52,68)(22,53,69)(23,54,70)(24,55,71)(25,94,44)(26,95,45)(27,96,46)(28,89,47)(29,90,48)(30,91,41)(31,92,42)(32,93,43)(33,87,130)(34,88,131)(35,81,132)(36,82,133)(37,83,134)(38,84,135)(39,85,136)(40,86,129)(57,79,109)(58,80,110)(59,73,111)(60,74,112)(61,75,105)(62,76,106)(63,77,107)(64,78,108), (1,106,49)(2,50,107)(3,108,51)(4,52,109)(5,110,53)(6,54,111)(7,112,55)(8,56,105)(9,83,25)(10,26,84)(11,85,27)(12,28,86)(13,87,29)(14,30,88)(15,81,31)(16,32,82)(17,75,124)(18,125,76)(19,77,126)(20,127,78)(21,79,128)(22,121,80)(23,73,122)(24,123,74)(33,48,101)(34,102,41)(35,42,103)(36,104,43)(37,44,97)(38,98,45)(39,46,99)(40,100,47)(57,144,68)(58,69,137)(59,138,70)(60,71,139)(61,140,72)(62,65,141)(63,142,66)(64,67,143)(89,129,113)(90,114,130)(91,131,115)(92,116,132)(93,133,117)(94,118,134)(95,135,119)(96,120,136), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128)(129,130,131,132,133,134,135,136)(137,138,139,140,141,142,143,144), (1,31)(2,26)(3,29)(4,32)(5,27)(6,30)(7,25)(8,28)(9,112)(10,107)(11,110)(12,105)(13,108)(14,111)(15,106)(16,109)(17,129)(18,132)(19,135)(20,130)(21,133)(22,136)(23,131)(24,134)(33,67)(34,70)(35,65)(36,68)(37,71)(38,66)(39,69)(40,72)(41,138)(42,141)(43,144)(44,139)(45,142)(46,137)(47,140)(48,143)(49,81)(50,84)(51,87)(52,82)(53,85)(54,88)(55,83)(56,86)(57,104)(58,99)(59,102)(60,97)(61,100)(62,103)(63,98)(64,101)(73,115)(74,118)(75,113)(76,116)(77,119)(78,114)(79,117)(80,120)(89,124)(90,127)(91,122)(92,125)(93,128)(94,123)(95,126)(96,121) );

G=PermutationGroup([[(1,65,76),(2,66,77),(3,67,78),(4,68,79),(5,69,80),(6,70,73),(7,71,74),(8,72,75),(9,134,44),(10,135,45),(11,136,46),(12,129,47),(13,130,48),(14,131,41),(15,132,42),(16,133,43),(17,105,140),(18,106,141),(19,107,142),(20,108,143),(21,109,144),(22,110,137),(23,111,138),(24,112,139),(25,118,37),(26,119,38),(27,120,39),(28,113,40),(29,114,33),(30,115,34),(31,116,35),(32,117,36),(49,62,125),(50,63,126),(51,64,127),(52,57,128),(53,58,121),(54,59,122),(55,60,123),(56,61,124),(81,92,103),(82,93,104),(83,94,97),(84,95,98),(85,96,99),(86,89,100),(87,90,101),(88,91,102)], [(1,141,125),(2,142,126),(3,143,127),(4,144,128),(5,137,121),(6,138,122),(7,139,123),(8,140,124),(9,118,97),(10,119,98),(11,120,99),(12,113,100),(13,114,101),(14,115,102),(15,116,103),(16,117,104),(17,56,72),(18,49,65),(19,50,66),(20,51,67),(21,52,68),(22,53,69),(23,54,70),(24,55,71),(25,94,44),(26,95,45),(27,96,46),(28,89,47),(29,90,48),(30,91,41),(31,92,42),(32,93,43),(33,87,130),(34,88,131),(35,81,132),(36,82,133),(37,83,134),(38,84,135),(39,85,136),(40,86,129),(57,79,109),(58,80,110),(59,73,111),(60,74,112),(61,75,105),(62,76,106),(63,77,107),(64,78,108)], [(1,106,49),(2,50,107),(3,108,51),(4,52,109),(5,110,53),(6,54,111),(7,112,55),(8,56,105),(9,83,25),(10,26,84),(11,85,27),(12,28,86),(13,87,29),(14,30,88),(15,81,31),(16,32,82),(17,75,124),(18,125,76),(19,77,126),(20,127,78),(21,79,128),(22,121,80),(23,73,122),(24,123,74),(33,48,101),(34,102,41),(35,42,103),(36,104,43),(37,44,97),(38,98,45),(39,46,99),(40,100,47),(57,144,68),(58,69,137),(59,138,70),(60,71,139),(61,140,72),(62,65,141),(63,142,66),(64,67,143),(89,129,113),(90,114,130),(91,131,115),(92,116,132),(93,133,117),(94,118,134),(95,135,119),(96,120,136)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88),(89,90,91,92,93,94,95,96),(97,98,99,100,101,102,103,104),(105,106,107,108,109,110,111,112),(113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128),(129,130,131,132,133,134,135,136),(137,138,139,140,141,142,143,144)], [(1,31),(2,26),(3,29),(4,32),(5,27),(6,30),(7,25),(8,28),(9,112),(10,107),(11,110),(12,105),(13,108),(14,111),(15,106),(16,109),(17,129),(18,132),(19,135),(20,130),(21,133),(22,136),(23,131),(24,134),(33,67),(34,70),(35,65),(36,68),(37,71),(38,66),(39,69),(40,72),(41,138),(42,141),(43,144),(44,139),(45,142),(46,137),(47,140),(48,143),(49,81),(50,84),(51,87),(52,82),(53,85),(54,88),(55,83),(56,86),(57,104),(58,99),(59,102),(60,97),(61,100),(62,103),(63,98),(64,101),(73,115),(74,118),(75,113),(76,116),(77,119),(78,114),(79,117),(80,120),(89,124),(90,127),(91,122),(92,125),(93,128),(94,123),(95,126),(96,121)]])

60 conjugacy classes

class 1 2A2B3A···3E3F3G3H3I4A4B6A···6E6F6G6H6I6J6K8A8B12A···12H12I···12Q24A···24P
order1223···33333446···66666668812···1212···1224···24
size11362···2444421082···244443636662···24···46···6

60 irreducible representations

dim1111222222224444
type++++++++++-+-
imageC1C2C2C2S3S3D4D6SD16D12C3⋊D4C24⋊C2S32D4.S3C3⋊D12D12.S3
kernelC3316SD16C32×C3⋊C8C3×C12⋊S3C338Q8C3×C3⋊C8C12⋊S3C32×C6C3×C12C33C3×C6C3×C6C32C12C32C6C3
# reps11114115282164148

Matrix representation of C3316SD16 in GL8(𝔽73)

10000000
01000000
007210000
007200000
000007200
000017200
00000010
00000001
,
10000000
01000000
007210000
007200000
00001000
00000100
00000010
00000001
,
10000000
01000000
00100000
00010000
00001000
00000100
000000072
000000172
,
1418000000
6547000000
0066140000
005970000
000072000
000007200
00000001
00000010
,
2842000000
7045000000
007200000
007210000
000007200
000072000
00000010
00000001

G:=sub<GL(8,GF(73))| [1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,72,72,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,72,72,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,72,72,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,72,72],[14,65,0,0,0,0,0,0,18,47,0,0,0,0,0,0,0,0,66,59,0,0,0,0,0,0,14,7,0,0,0,0,0,0,0,0,72,0,0,0,0,0,0,0,0,72,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0],[28,70,0,0,0,0,0,0,42,45,0,0,0,0,0,0,0,0,72,72,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,72,0,0,0,0,0,0,72,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1] >;

C3316SD16 in GAP, Magma, Sage, TeX

C_3^3\rtimes_{16}{\rm SD}_{16}
% in TeX

G:=Group("C3^3:16SD16");
// GroupNames label

G:=SmallGroup(432,443);
// by ID

G=gap.SmallGroup(432,443);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-3,-3,-3,28,197,135,58,571,2028,14118]);
// Polycyclic

G:=Group<a,b,c,d,e|a^3=b^3=c^3=d^8=e^2=1,a*b=b*a,a*c=c*a,a*d=d*a,e*a*e=a^-1,b*c=c*b,b*d=d*b,e*b*e=b^-1,d*c*d^-1=c^-1,c*e=e*c,e*d*e=d^3>;
// generators/relations

׿
×
𝔽